

The Study of a Computer-Supported Collaborative
Virtual Design System with VRML-JAVA-EAI

Hao-Ren Ke1, Hung-Chun Chiu2, Chien-Hung Tsao2, Zen-Chun Shih2

1Library, National Chiao Tung University, 1001 Ta-Hsueh Rd., Hsinchu, Taiwan, R.O.C.
claven@lib.nctu.edu.tw

2Department of Computer and Information Science, National Chiao Tung University, 1001
Ta-Hsueh Rd., Hsinchu, Taiwan, R.O.C.

{gis87547, gis87563, zcshih}@cis.nctu.edu.tw

Abstract

This paper proposes a computer collaborative virtual
design system (CSCVD) implemented by VRML, Java,
and EAI. This system is a WWW-based client-server
system, and messages are encapsulated in Protocol Data
Unit (PDU) to transmit. PDUs are delivered via TCP. To
overcome the shortcomings of TCP, this paper proposes
a buffering method. The dead reckoning technology is
also employed to predict the future positions of objects in
order to reduce packets transferred on the network.

Keywords : Computer-Supported Collaborative Virtual
Design (CSCVD), VRML, JAVA, External Authoring
Interface (EAI)

1. Introduction

In fields like stage lighting, architecture, and industry
design, the interaction, collaboration and communication
among people (for example, designers and designers,
customers and designers) are beneficial to create new
ideas, reduce the time of design cycle, and design perfect
products [1][6]. With the great improvement of the
network speed, and the CPU power and graphical
capability of computers, it is gradually becoming
possible to develop systems participated by multi-users
via networks; consequently, now is the right time to
develop Computer-Supported Collaborative Virtual
Design (CSCVD) systems that encourage multiple users
to share their ideas and participate in design processes
without the limitation of location and time.

In the literature, several researches have proposed
networked multi-user VR systems before; however, most
of these systems are proprietary, and as a result, they are
not very portable, extensible, and flexible . On the other
hand, a few networked multi-user VR systems with an
open architecture have also been proposed. DIVE is one
representative system, which is a VRML-based system
[4]. DeepMatrix [7] is another example, which is
implemented with VRML, JAVA, and EAI (External
Authoring Interface).

The purpose of this paper is to explore how to apply the

techniques of computer graphics, virtual reality, and
computer networks to the traditional collaborative design
process, and present a CSCVD prototype system.

Similar to multi-user VR systems, a CSCVD system has
to deal with the following three issues: (1) the rendering
of virtual scenes and objects, (2) the control of virtual
objects, and (3) the network communication among
participants. Taking into account issues like interaction,
real-time, portability, extensibility, and data sharing, we
implement this system by VRML [10], JAVA, and EAI
[11]. VRML is a standard for modeling 3D virtual
worlds under WWW and we use VRML to render virtual
scenes and objects. EAI is an interface to external
application programs for controlling the local scene data
of a VRML environment and we choose Java to
implement EAI. As the current version of VRML does
not support interaction between multiple users, we use
JAVA to enable network communication among
participant computers.

Our system is a WWW-based client-server system. Users
taking part in a design process can connect to the system
by a VRML-enabled WWW Browser. In our system,
users can manipulate objects of a virtual world in many
ways they want, and the manipulation of an object by a
client will be seen simultaneously by all other clients.
Users can also add objects into a virtual world by using a
model database stored in the server or uploading objects
stored locally in their desktops. In addition, they can
exchange and share ideas and experiences with one
another by a chat room. With the functionality
incorporated in our systems, the goal of cooperative
design can be achieved easily.

The organization of this paper is as follows. Section 2
describes the architecture of our CSCVD system. Section
3 focuses on the functions of our CSCVD system.
Section 4 introduces the prototype system and
preliminary simulation result. Section 5 gives the
conclusion.

2. System Architecture

2.1. Overview

The CSCVD system proposed in this paper is a
client-server VRML-JAVA -EAI system. Users
participate in the system through VRML-enabled WWW
browsers. Messages are transmitted by TCP. Figure 1
illustrates the interrelation among all the techniques
exploited in our system [2].

EAI

VRML

Java

TCP

EAI

VRML

Java

TCP

Browser
(Plug-In)

Server
Application

(in Java)

Browser
(Plug-In)

Figure 1 The interrelation among Browser, VRML, EAI,
Java, and TCP

The primary tasks of a server include:

User authentication. If a user is a first-time comer, the
server will request personal information from the user;
otherwise, the server retrieves the user’s information and
usage history that is stored in a database maintained by
the server. After a user logins to our system, the server
will send the most up-to-date scene data to the client via
HTTP.

User information maintenance. The server stores all the
related information about users, including the IPs from
which users connect to the server, and the avatars that are
employed to represent users. In our implement, the
H-anime format [5] is used to represent avatars.

Virtual scene maintenance. The server stores all the
related information about a scene, objects in the scene
and their associated properties. The server updates all the
related information according to how users manipulate
the scene data.

Message processing. The server is responsible for
collecting messages sent by a client, and sending them to
all other involved clients.

The primary tasks of a client include:

User interface. The user interface is responsible for
accepting actions performed by users, sending messages
to the server, receiving messages from the server, and
invoking EAIControl to update the local scene.

EAIControl. EAIControl is an EAI-enabled Java class to
manage the dynamic changes of a virtual world. EAI
builds a bridge between a virtual world and external Java
applets that manipulate it. The extensibility of our system

is achieved by writing Java methods belonging to
EAIControl. Most of the functions for collaborative
virtual design are achieved by EAIControl.

User information and scene data maintenance. Similar to
the corresponding tasks of the server.

Chat Room. The chat function is for user
communication. It is responsible for sending chat
messages to the server, and the server will relay
messages to other clients.

2.2. Server Architecture

Object
Manager

User
Manager

Server
Writer

Client

SerConn SerConn SerConn SerConn

ClientClientClient
PDU PDU PDU PDU

Figure 2 The server architecture

Figure 2 depicts the server architecture. The server is
composed of four components: Object Manager, User
Manager, Server Writer, and SerConn.

Object Manager. Our system stores virtual objects (e.g. a
table, a chair, etc) in separate VRML files. From the
server point of view, a virtual scene consists of instances
of virtual objects, and Object Manager keeps the related
information of each object instance in a scene, including
an object name, the corresponding VRML file name, and
its owner, position, moving direction, size, etc.

User Manager. User Manager keeps the related
information of each participant, including the IP address
from which the user connects to the system, user
identifier, corresponding avatar model, and the object
instances owned by the user.

Server Writer. Server Writer takes charge of the
transmission of messages, which are encapsulated in
Protocol Data Unit (PDU) [3], to clients. Our system
transmits PDUs via TCP, which is reliable but slow. In
order to expedite the process of message passing, PDUs
are stored first in buffers managed by Server Writer,
packed into a larger PDU at intervals, and then sent out.
We further describe PDU and the buffering concept in
Sections 2.4 and 2.5.

SerConn. SerConn is the primary control process to
communicate with clients. Each time a new participant

connects to the server, a SerConn thread is created to
communicate with the participant’s client until the client
disconnects. The tasks of a SerConn include: (1)
receiving PDUs sent from clients, (2) performing
necessary update according to the received PDUs, and
(3) sending PDUs to the clients.

2.3. Client Architecture

PDU

Object
Manager

User
Manager DR

CliConn

Server

Client
Writer

EAIControl

VRML Scene

Figure 3 The client architecture

Figure 3 shows the client architecture. The client is
composed of six components: Object Manager, User
Manager, Client Writer, CliConn, EAIControl, and DR
(Dead Reckoning [8]). The responsibilities of the
client-side Object Manager, User Manager, and Client
Writer are similar to their server-side counterparts, and
the information stored in client-side and server-side
Object/User Managers has to be synchronized. The
following describes CliConn, EAIControl, and DR.

CliConn. CliConn is the primary control process to
communicate with the server. The tasks of CliConn
include: (1) sending PDUs to the server, (2) receiving
PDUs from the server, (3) performing necessary update
according to the actions performed by the user and/or
PDUs sent by the server, and (4) calling EAIControl to
update the virtual scene.

EAIControl. EAIControl facilitates virtual design.
EAIControl is a Java class and consists of several
methods, each of which conducts a design operation.
CliConn invokes a suitable EAIControl method to
conduct a design operation designated by a PDU. We
further describe EAIControl in Section 3.1.

Dead Reckoning (DR). DR is an approach proposed in
Distributed Interactive Simulation (DIS) [3] to
forecasting the future position of an object. If the
difference between the accurate and forecasting positions
of an object is within a predefined threshold, no PDU for
updating the object position is required to transmit; in
this manner, the number of messages transmitted over
the network can be reduced. In this system, we apply DR
to forecast the position of objects in uniform motion and
uniform acceleration motion.

2.4. Protocol Data Unit (PDU)

The concept of PDU was originally developed in DIS.
As a standard packet format, PDU was used for
communicating messages among distributed simulation
systems. DIS proposed 6 classes and in total 27 kinds of
PDUs. The PDUs designed by DIS are for military
simulation and are very complicated; therefore, instead
of using the original PDUs, we develop PDUs that meet
the requirements of collaborative design. The PDUs
proposed in the paper are divided into two classes: data
transmission, flow control.

?? Data Transmission: Chat PDU, File PDU,
PositionUpdate PDU, OrientationUpdate PDU,
AddObject PDU, DeleteObject PDU, AddAvatar
PDU, DeleteAvatar PDU, and DirectionMove
PDU.

?? Flow Control: Login PDU, Logout PDU,
Reconnect PDU, PDUPack PDU, Get PDU, and
Release PDU.

Table 1 depicts the format of the PositionUpdate PDU.
For the formats of other PDUs, please refer to [2] for
details.

Content PDU
Flag

Time
Stamp

Object Name Position XYZ

Data
Type

Integer String String Float [3]

Table 1 The format of the PositionUpdate PDU

2.5. TCP Buffering

Broadcast
Buffer

PDU

PDU

PDU

Buffer
A

PDU

PDU

PDU

Buffer
B

PDU

PDU

PDU

Buffer

PDU

PDU

PDU

Buffer

PDU

PDU

PDU

Client A Client B

Server

Figure 4 The buffering approach to overcome the TCP
drawback

Our system uses TCP to transmit data, which is reliable
but slow; furthermo re, if TCP is used to transmit many
small data in a very short period of time, it is neither
efficient (the sender has to confirm the receipt of data)
nor effective (the header of the TCP packet may be
larger than the actual data). By our experiment, if TCP is
used directly, on average only 30 PDUs can be

transmitted per second, which is unacceptable for a
multi-user VR system. To overcome this drawback, we
propose a buffering method. Instead of sending PDUs
immediately, the system keeps PDUs in a buffer, packs
PDUs into a PDUPack PDU at intervals, and then sends
out the PDUPack PDU. This buffering approach is
performed by the Server Writer and Client Writer. Figure
4 Illustrates the idea of buffering. From this figure, we
can see that the Server Writer has a separate buffer for
each client and has a broadcast buffer for transmitting
PDUs to all clients.

2.6. System Operation Flow

In this section, we present the operation flow from the
user viewpoint and system viewpoint.

EAIControl

Browser

Applet
Server App

Web Server

?

?

?

?

?

?

?

User /Object
Manager

?

Figure 5 The operation flow from the user viewpoint

Figure 5 illustrates the operation flow from the user
viewpoint:

1. A user participates in the CSCVD system by
connecting to the Web server via HTTP.

2. In addition to an HTML file, the client downloads a
VRML scene and the main Java Applet from the
Web server.

3. The client’s Browser invokes the VRML plug-in and
executes the main Java Applet. The browser window
shows the VRML scene, function buttons, chat
room, and other menus, and the client waits for user
actions.

4. The main Java Applet builds connection with the
server and sends out PDUs according to user’s
action.

5. The server processes PDUs and sends out PDUs to
those clients that should receive the PDUs.

6. The main Java Applets updates the User/Object
Manager according to the PDU received, and invoke

EAIControl.

7. EAIControl updates the VRML scene by invoking
the EAI interface of the VRML plug-in.

8. Repeat 3-7.

EAIControl

CliConn

All Client

Object
Manager

SerConn

?

?

?
?

?

?

User
Manager

VRML
Scene

Object
Manager

User
Manager

?
?

Client Writer

?

Figure 6 The operation flow from the system viewpoint

Regarding the operation flow from the system viewpoint,
we take the update of an object’s position as an example.
See Figure 6 for illustration:

1. CliConn receives the action to move an object,
creates a PositionUpdate PDU and stores the PDU
in Client Writer. Client Writer packs the PDU along
with other PDUs into a PDUPack PDU and sends
PDUPack PDU to the server.

2. The server unpacks the PDUPack PDU and
processes each PDU. When the server processes the
PositionUpdate PDU mentioned in 1, Object
Manager updates the object position.

3. The server has to inform all clients of the new
position of the object; therefore, the server creates a
PositionUpdate PDU and stores the PDU in
Broadcast Buffer of Server Writer. Server Writer
packs the PDU along with other PDUs into a
PDUPack PDU and sends PDUPack PDU to all
clients.

4. When a client receives the PDUPack PDU, it
unpacks this PDU and processes each PDU. When
the client processes the PositionUpdate PDU
mentioned in 3, Object Manager at the client side
updates the object position.

5. CliConn invokes the corresponding method in
EAIControl to move the object.

6. EAIControl updates the VRML scene by moving the

object.

3. Collaborative Virtual Design

Based on the system architecture presented in the
previous section, a CSCVD system is developed [9]. The
purpose of this CSCVD system lies in facilitating the
collaborative arrangement of 3D models and lighting,
and enabling the communication among participants. In
this section we briefly describe the functions of the
system.
3.1. EAIControl

EAIControl is the kernel for implementing most
functions supporting collaborative virtual design.
Basically, EAIControl is a Java class inheriting the EAI’s
EventOutObserver interface. EAIControl is a collection
of methods to manipulate objects or obtain the
information of objects (see Figure 7). For example, we
can invoke EAIContol.getNodeTranslation(object_name)
to obtain the position of an object. Although the methods
of EAIControl fulfill different functions, the underlying
principle of writing methods is very similar, as illustrated
in Figure 8, and we briefly describe the steps to write a
method as follows. (1) Call getBrowser() to obtain the
reference to a specific VRML scene. (2) Call getNode()
to obtain the reference to a specific object that we want
to manipulate. (3) Call getEventIn() or getEventOut() to
obtain the events of an object. (4) Manipulate the object
by using the events of an object.

Figure 7 The specification of EAIControl

getBrowser

getNode

getEventOutgetEventIn

Current VRML scene

VRML node to be
manipulated

Figure 8 The naive steps to write an EAIControl method

However, in our implementation, we find that if we
follow the aforementioned steps to write an EAIControl

method, the performance is unsatisfactory because the
references to the browser, objects, and events have to be
obtained repeatedly on the fly. To improve the
performance, we store the references to the EventIn and
EventOut of an object into an array when the object is
added into the virtual scene. While an EAIControl
method is invoked to manipulate an object, it retrieves
the object’s references directly from the array. Figure 9
shows the modified steps to write EAIControl methods.
To further enhance the performance, a hash table is
employed to retrieve the reference arrays of all objects.

EAIControl

Manipulate
an object

Delete an
object

getEvent

Retrieve Event
from reference

array

Release
reference array

Perform related
action

getBrowser

getNode

Store into
reference array

Add an
object

Figure 9 The improved steps to write an EAIControl
method

3.2. Virtual Design Functions

Model Database. A model database stores objects that
can be used by participants. The manager of our system
can pre-load well-designed models into the database. In
addition, users can upload models from their desktops,
and in this way participants can share models they
design. A Java Applet is employed to read a VRML
model from a client, encapsulate the VRML model into a
File PDU, and send the PDU to the server.

Object Selection. Before a participant performs any
actions on an object, he/she has to select the specific
object. We accomplish the selection of objects by using
VRML’s TouchSensor attached on geometry nodes and
EAI’s listening mechanism.

Basic Transformation. We design three kinds of interface
for users to control the translation, rotation, and scaling
of objects. First, users can input the precise values to
control the transformation of an object; second, users can
click function buttons to control the variation of an
object from its current status; third, users can control the
transformation by dragging an object.

Object Dragging. It’s convenient for users to manipulate
an object by dragging. We achieve the dragging of

public class EAIControl implements
EventOutObserver {
 public EAIControl() { }
 public void callback() { }
 public float[] getNodeTranslation() { }
 public void setNodeTranslation() { }
 public void addNewObjectNode() { }
 public void removeObjectNode() { }
 … …
}

objects by using VRML’s PlaneSensor, SphereSensor
and CylinderSensor.

Lighting Control. Our system provides users a
mechanism to control the lighting of a scene. Users can
manipulate spot and point light sources (by VRML’s
SpotLight and PointLight), fog effects, and viewpoints.

Advanced functions. In addition to the above basic
functions, we devise a few advanced functions to
facilitate the manipulation of objects. For example, the
well known Copy and Paste functions are convenient for
users to duplicate objects; the Group and Ungroup
functions can treat many objects as a whole and
manipulate them uniformly.

Chat Room. In a CSCVD system, communication among
participants is very important. In general, communication
channels can include image, video, audio, text, and
among others. We implement a chat room in our system
to transmit text messages among participants. Chat PDU
is employed to carry chat messages.

3.3. Scene Loading and Storing

Usually, several runs are necessary for finalizing a
design. Therefore, it is essential that a CSCVD system
incorporates a mechanism to store a draft design for
follow-up modification. Due to a few restrictions of
VRML and EAI, we propose a method for loading and
storing scenes. Basically, we have a non-VRML
definition file to store the information of a scene, which
is created by using the information stored in Object
Manager. While a user wants to modify a previous scene,
the system gives the user an empty VRML scene and
adds nodes dynamically into this empty scene according
to the corresponding definition file. This approach has
three advantages: (1) it is easy to implement and
maintain; (2) because the server has stored already the
VRML files of objects, the non-VRML definition file for
a scene only needs to store objects ’ VRML file names
and coordinates, which results in a small file size; (3) by
this approach, users can control every object in a scene,
which is very difficult to accomplish by storing the
whole scene as a VRML file.

4. Results

We have implemented a prototype system by using the
ideas proposed in this paper. The server side can be
executed on any machine that has installed a Web Server
and Java Runtime Environment. The client side can be
executed on any machine that has installed a
Java-enabled WWW browser and VRML 2.0 Plug-in.

Figure 10 shows the current appearance of the CSCVD
server. The upper-left part is the function buttons to
start/stop the server, remove users, and add/remove
objects; the middle -left window displays the actions
performed by users and chat messages among
participants; the lower-left part is the function buttons to
move the position of objects; the upper-right and

lower-right windows show the objects and users in a
virtual scene, respectively.

Figure 10 The CSCVD Server

Figure 11 The Client of the first participant

Figure 11 and Figure 12 are the snapshots of the virtual
scene from two participants’ viewpoints. The left
windows is the main window to show a virtual world; the
right part is a chat window for users to share ideas and
function buttons from which users can issue
manipulation on scene objects, upload object models to
the virtual world, identify other participants, etc. User
can also manipulate objects directly via a mouse and
keyboard.

Figure 12 The Client of the second participant

To evaluate the improvement in TCP by using the
buffering method, we performed a preliminary
simulation. 3000 PositionUpdate PDUs were sent from

the server to a client. Two simulation tests were
performed, one when the server and the client were
connected by a LAN, and the other when they were
connected by 56K modems. Table 2 shows the
comparison of buffering and non-buffering method. We
can see from this table that under the 56K modem and
LAN networking environment, 10.19 times and 21.99
times improvement were obtained, respectively. In the
future, we will perform detailed performance measure.

 Buffer No Buffer Improvement
10.015 Sec 102.19 Sec 56K

Modem 299.6
PDU/Sec

29.4 PDU/Sec 10.19

4.54 Sec 99.82 Sec
LAN 660.8

PDU/Sec
30.1 PDU/Sec 21.99

Table 2 The comparison of TCP buffering/
non-buffering. 3000 PositionUpdate PDUs were sent.

5. Conclusion

This paper describes the implementation of a
computer-supported collaborative virtual design system.
This system is implemented by VRML, JAVA, and EAI.
As VRML, JAVA, and EAI are open standards, our
system fulfills the needs of portability, extensibility, and
flexible. We refine the PDUs proposed in DIS to
encapsulate messages transmitted in our system. A
buffering method and dead reckoning are leveraged to
overcome the drawbacks of TCP.

A prototype system has already been implemented, and
more advanced functions will be incorporated into the
prototype very soon. A preliminary performance
measurement has been undertaken. With our system,
cooperative design can be accomplished efficiently and
effectively.

 Acknowledgment

The authors would like to thank National Science
Council for financially supporting this research under
Contract No. NSC-88-2213-E-009-046.

Reference

1. Bridges and D. Charitos "On Architectural Design in
Virtual Environments", Design Studies, 18(2):
143-154, 1997.

2. H. C. Chiu, H. R. Ke, and Z. C. Shih, “A Study on
Distributed Multi-User Virtual Reality System,”
Master Thesis, National Chiao Tung University,
2000.

3. DIS, “Standard for Distributed Interactive
Simulation-Application Protocols”, Draft standard
from Institute for Simulation and Training,
University of central Florida, 1994.

4. O. Hagsand, ”Interactive Multi-user VEs in the
DIVE system”, IEEE Multimedia, 31: 30-39, 1996.

5. The Humanoid Animation Working Group,
http://ece.uwaterloo.ca/~h-anim/spec1.1

6. D. Marca and G. Bock, “Groupware: Software for
Computer-Supported Cooperative Work,“ IEEE
Computer Society Press, Los Alamitos, Calif., 1992.

7. G. Reitmayr, S. Carroll, A. Reitemeyer, M. G.
Wagner, “DeepMatrix – An open technology based
virtual environment system”, The Visual Computer,
15: 395-412, 1999.

8. J. Towers and J. Hines, “Equations of Motion of DIS
2.0.3 Dead Reckoning Algorithm, “ 10th DIS
Workshop Proceedings, 1995, pp.431-462.

9. C. H. Tsao, H. R. Ke, and R. C. Chang, “A
Web-based Virtual Reality System for Real-Time
Cooperative Design,” Master Thesis, National Chiao
Tung University, 2000.

10. VRML Standard Version 2.0,
http://vrml.org/VRML2.0/

11. VRML External Authoring Interface Specifications,
http://vrml.org/WorkingGroups/vrml-eai/

